Компания АРОМАРОС-М - пищевые добавки, натуральные добавки, вкусо-ароматические добавки, ароматизаторы и премиксы для колбасного производства
На главную
Новости: АмерикаБизнесБывший СССРИгрыИз жизниИнтернетКиноКиргизияКультураМасс-медиаМирМузыкаНаука и техникаО высокомОружиеПреступностьПрогрессРоссияСпортТехнологииУкраинаФинансыЭкономика
Все разделы - Прогресс - Математик приблизился к решению проблемы Гольдбаха

Математик приблизился к решению проблемы Гольдбаха



17:44:19 15.05.2012

Математик Теренс Тао (Terence Tao) из Калифорнийского университета продвинулся в доказательстве малой (тернарной) проблемы Гольдабаха. Об этом сообщает Nature News. Препринт статьи доступен на сайте arXiv.org.

Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Слабая или тернарная проблема звучит следующим образом: доказать, что всякое нечетное число больше пяти представимо в виде суммы трех простых. Из справедливости бинарной проблемы следует справедливость тернарной (в качестве одного из простых в разложении достаточно взять тройку).

Наибольшие продвижения в решении сделаны в направлении тернарной задачи. Так, в 1937 году математик Иван Виноградов доказал, что все достаточно большие (то есть большие некоторого фиксированного N) нечетные числа можно представить в виде суммы трех простых. Его учеником Константином Бороздиным было показано, что граница N в работе Виноградова составляет число порядка 10 6 846 168 . Позже она неоднократно уменьшалась и в настоящее время лучший порядок оценки - 10 43 000,5 .

Полученные результаты все еще не позволяют проверить исключительные случаи теоремы Виноградова на компьютере, поэтому работа в этом направлении ведется достаточно активно. Теренсу Тао удалось доказать, что всякое нечетное число представимо как сумма не более чем пяти простых чисел. Фактически это ближайший к тернарной проблеме Гольдбаха результат из всех возможных - простые числа больше двойки нечетны, поэтому нечетное число не может быть представлено в виде суммы четырех таких чисел (сумма будет четной). Следующее улучшение результата - сумма трех простых чисел, то есть малая проблема Гольдбаха.

Что касается бинарной проблемы Гольдбаха, то про нее известно много меньше. В настоящий момент есть теорема Ромаре 1995 года, которая утверждает, что любое четное число представимо в виде суммы не более чем шести простых чисел. Из этого результата легко получается, что, в предположении истинности тернарной проблемы Гольдбаха, всякое четное число представимо в виде суммы не более чем четырех простых чисел.


Версия для печати | Источник новости


«Предыдущая    В раздел Прогресс   Следующая»



Рекламодателям Добавить ресурс Вход для владельцев ресурсов
© 2002 - 2025 Faststart.ru
e-mail: [email protected]